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Abstract— Autonomous ground vehicles navigating on road networks require robust and accurate localization over 
long term operation and in a wide range of adverse weather and environmental conditions. GPS/INS solutions, which are 
by themselves insufficient to maintain a vehicle within a lane, can fail due to significant radio frequency noise or jamming, 
tall buildings, trees, and other blockage or multipath scenarios. LIDAR and camera map-based vehicle localization can 
fail when the optical features change or become obscured, such as with snow, dust, or changes occurring on the surface of 
gravel or dirt roads. The optical surfaces themselves are also easily susceptible to damage from small rocks or debris. 
Localizing Ground Penetrating RADAR (LGPR) is a new mode of a-priori map-based vehicle localization designed to 
complement existing approaches with a low sensitivity to the failure modes of LIDAR, camera, and GPS/INS sensors due 
to its low frequency RF energy, which couples deep into the ground. Most of the sub-surface features it detects are 
inherently stable over time. Many areas of research, discussed in this paper, remain to prove out general use of the 
concept. We have developed a novel low-profile ultra-low power LGPR system and demonstrated real-time operation 
underneath a passenger vehicle. A correlation maximizing optimization technique was developed to allow real-time 
localization at 125 Hz. Here we present the detailed design and results from highway testing in which we use a simple 
heuristic for fusing the LGPR estimates with a GPS/INS system.   Cross-track localization accuracies of 4.3 cm RMS 
relative to a “truth” RTK GPS/INS unit at speeds up to 100km/h (60mph) are demonstrated.  These results, if 
generalizable, offer a widely scalable real-time localization method with cross-track accuracy as good as or better than 
current localization methods. 

Keywords-LGPR; Localization; GPR; Localizing Ground Penetrating Radar;  Autonomous;  Unmanned; Ground Vehicle; Sensing; 
Navigation; GPS Denied; Adverse Conditions 

1 INTRODUCTION 
Self-driving vehicles and driver-assist systems have been pursued on a worldwide basis. One main 

objective is to reduce the yearly vehicle accident fatalities (32K US (National Highway Traffic Safety 
Administration, 2011) and an estimated 1.24M worldwide (World Health Organization, 2013)). Effective 
GPS/INS, LIDAR, and camera based autonomous navigation techniques were developed and honed in the 
DARPA Grand and Urban Challenges, though operation was in a carefully staged and mapped environment 
(Buehler, Iagnemma, & Singh, 2009). However, GPS/INS approaches, typically aided using wheel 
odometry, are insufficient to maintain a vehicle in a typical lane with typical real-time 2σ values well over 
1m (Kennedy & Rossi, 2008).  Failure modes for GPS dependent solutions include blockage and multipath, 
such as arise in urban and heavily forested or mountainous environments.  

Distribution A: Public Release. This work is sponsored by the Department of the Army and the Assistant Secretary of Defense for Research & Engineering
under Air Force Contract #FA8721-05-C-0002.  Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily
endorsed by the United States Government. 



 
LIDAR based algorithms fused with GPS/INS, wheel odometry, and cameras offer a very successful 

approach to localization. One of the most successful approaches was the modification of LIDAR mapping 
algorithms to use surface intensity probabilistic maps (Levinson, Montemerlo, & Thrun, 2007) (Levinson & 
Thrun, 2010).  Notably, using this method, the GPS/INS solution was improved to approximately 9 cm in 
urban environments, and demonstrated in traffic and during rainfall. The surface intensity probabilistic map 
approach breaks down when the LIDAR beam is significantly attenuated or blocked, such as occurs in snow, 
fog (Yamauchi, 2010), dust, or with dirt on the lens.  Additionally, changes to the road surface, such as 
would be expected on dirt roads or after repainting may require updating of the map. Camera based 
approaches continue to be refined, with active vehicle localization approaches such as topometric 
localization (Badino, Huber, & Kanade, 2012), FAB-MAP (Cummins & Newman, 2011), and linear 
mosaicing (Unnikrishnan & Kelly, 2002). These approaches also have similar limitations to the LIDAR 
systems due to their use of optics and their operation in dynamic environments. 

Self-driving vehicles must be robust to environmental conditions and related failures in order to be 
broadly useful and live up to their potential. Milford and Wyeth (Milford & Wyeth, 2012) sought robustness 
in camera based localization by identifying sequences of matches rather than single feature matches. Nuske 
et. al (Nuske, Roberts, & Wyeth, 2009) used a multi-hypothesis particle filter to select among matches to 3D 
edges in the environment.  Brunner et. al. (Brunner, Peynot, Vidal-Calleja, & Underwood, 2013) augmented 
visual sensing with thermal sensing to do localization in the face of obscuration and darkness. 

  In this paper, we detail a new mode of a-priori map-based localization, Localizing Ground Penetrating 
RADAR (LGPR). LGPR is a form of Ground Penetrating Radar specifically designed to enable map based 
localization.  LGPR offers complementary capabilities to traditional optics-based approaches to map-based 
localization including the ability to transmit through air-based obscurants such as fog and dust, and common 
surface obscurants such as dirt and snow (Hoekstra & Delaney, 1974) (Abe, Yamaguchi, & Sengoku, 1990). 
Hence, LGPR offers increased resistance to common failure modes of existing localization techniques, 
which potentially allows for significant improvements in robustness when fusing it with those existing 
approaches. In addition, LGPR senses a generally stable environment, discussed in Section 4.1, which 
complements the dynamics of surface environments. A range of research challenges and risks, discussed in 
Section 4, remain to be addressed, including all-weather operation, data storage requirements, and array size 
reduction.   

We developed an early stage version of the LGPR system, shown in Figure 2, which has been used to 
automate the steering of multiple armored vehicles and was tested in three US states prior to several months 
of operation in Afghanistan in 2013.  This large scale system, which operated at 7.5-15km/h, was tested on 
several soil types, on and off road, and demonstrated over thousands of kilometers of operation. 

  
Figure 1. The Localizing Ground Penetrating Radar (LGPR) array is shown mounted under the vehicle in this concept 

drawing. Radio frequency (RF) signals bounce off of underground features to localize a vehicle using a prior map of the 
subsurface.



 
  While the rough concept of Localizing GPR has been introduced in limited detail (Stanley, Cornick, & 

Koechling, 2013), here we present in sufficient detail as to allow peer verification, the first practical (small 
size, low power) design for an LGPR system on a commercial passenger vehicle, with the capability of 
achieving high speed operation (at least 100 km/hr).  In addition, we, for the first time, characterize the real-
time localization accuracy, long distance highway operation, and high speed performance of an LGPR 
system.  

Previous work has combined robotics with GPR. Herman (Herman, 1997), Williams (Williams, 2012), 
and Lever et al. (Lever, et al., 2013) all used autonomous systems to move GPR systems, enabling them to 
create subsurface maps. They did not, however, attempt to localize the robots using those maps. 

 

We have integrated the LGPR sensor onto a 2000 Chevrolet Silverado truck (see Figure 3), which we 
also equipped with two Oxford Solutions RT3003 GPS/INS systems: one is a real-time kinematic (RTK) 
system solely used for truth reference while the other receives WAAS differential corrections and is loosely 
coupled with the LGPR system to provide the LGPR position estimates for both mapping and localization. 
The RTK truth reference unit is coupled with a local base station that allows local 2cm accuracy location 
measurements. The RT3003 uses a MEMS-based IMU and dual GPS antennas to produce a 6-DOF Kalman 
Filter based pose output with 1σ heading error of approximately 0.1 degrees. The LGPR array is mounted 
underneath the vehicle behind the front wheels.  We use spacers underneath the chassis to fix the array 
height at 15cm (6in) above the ground, the initial design point.  In general the performance of GPR systems 
improves monotonically as the array is lowered to the ground surface, but this must be balanced with the 
need for ground clearance.   

We first discuss designing an under-vehicle mounted LGPR system, including key design parameters.  
We then move on to the algorithms supporting mapping and real-time localization before discussing the 

 
Figure 2: An early stage version of the localizing ground penetrating radar system (out 
front of the armored vehicle).  This system steered itself based on real-time localization 

from the LGPR system. Operation was shown over a range of soils and road types during 
thousands of kilometers of operation in the US and Afghanistan. 

 
Figure 3. The low-profile LGPR system is mounted underneath the experimental vehicle. GPS/INS system antennas for the 

RTK truth and differential units are mounted on the outermost corners of the vehicle chassis. 



experimental results from high speed highway testing. We conclude by discussing remaining concept risks 
that should be addressed in future research. 

 

2 LOCALIZING GROUND PENETRATING RADAR SYSTEM 
The Localizing Ground Penetrating RADAR (LGPR) system, designed and developed by MIT Lincoln 

Laboratory, consists of both hardware and processing components.  The hardware component is a uniquely 
designed type of ground penetrating RADAR that allows high cross-track resolution to accurately detect 
subsurface features and has specially designed uniform elements to allow comparison of measurements even 
if the array element overlaps a different portion of the map than during its original pass. The key parameters 
of the LGPR system are shown in Table 1.  

Table 1. Key LGPR RADAR parameters 

Key Parameter Value

Radar Type Stepped Frequency Continuous Wave 

Frequency Range 100MHz-400MHz

Frequency Spacing 51 tones spaced by 6MHz

Array Dimensions 152.4cm x 61cm x 7.6cm  (5 ft x 2 ft x 3 in)

Array Offset from Ground 15.24cm (6 in)

Number of antenna elements in array 12

Number of channels 

(number of pairs of elements) 

11

Total Radiated Power 40µW continuous (one element at a time)

Leakage Power (radiated above-ground) 4µW 

Radar Sweep Rate (all 11 channels) 125Hz

Depth of Penetration 2m-3m (New England Soil) 

Radar Range Resolution 20cm-30cm

 

The LGPR operates at low frequencies to allow deep ground penetration and to reduce the amount of 
small clutter in the image. Details, including the unusually low radiated power, are covered in section 2.1.  

The processing component is made up of the mapping and registration components.  The unique aspect of 
the mapping and registration components is that they are streamlined so that they are all accomplished 
automatically in real-time at 125 Hz on a consumer-grade dual core processor.  The key components of the 
current LGPR processing subsystem are shown in Table 2. 

Table 2. Key LGPR Processing Parameters 

Key Parameter Value

Real-time Localization  Rate 125 Hz

Type of RADAR Data Filter High Pass



Type of Registration Algorithm Heuristic search, maximizing correlation 
over 5 degrees of freedom (DOF) 

Correlation Threshold 

 (Integrated velocities used below this value rather 
than GPR solution) 

0.9 (out of range -1 to 1) 

Overlap Threshold 

(Integrated velocities used below this value rather 
than GPR solution) 

2 elements (out of range 0 to 11) 

 

The mapping and registration components are detailed in section 2.2 

2.1 LOCALIZING GPR SENSOR 
In the area of sub-surface sensing, ground penetrating RADAR (GPR) is one of the most versatile and 

prolific sensing modalities today.  All soil and most road materials are semi-transparent to radio waves.  
GPR systems work by sending a pulse of electromagnetic radiation into the ground, and measuring 
reflections that originate from scattering below the surface.  Reflections occur at the interface between 
objects of different electromagnetic properties; for example the interface between soil and pipes, roots, or 
rocks.  However, it is not these discrete objects but rather the inherent inhomogeneity in subterranean 
geology that often dominates GPR reflection profiles.  This can be seen in Figure 4, in which soil layers and 
variations in moisture content cause extended reflections in the data. GPR data paints a fairly complete 
picture of the subsurface environment.  Nearly every discrete object and soil feature is captured, provided 
that it is not significantly smaller than a wavelength and that it has sufficient dielectric contrast with the 
surrounding soil.  The premise of GPR localization is that these subsurface features, as represented in GPR 
data, are sufficiently unique and static to permit their use as identifiers of the precise location where they 
were collected.   

 

 

 

2.1.1 Introduction to GPR 

A general guideline is that the maximum detection depth of a GPR will often be 3-4 skin depths, where 
skin depth is a measure of the depth to which the pulse can propagate before losing most of its energy 
(specifically 1/e lower in field values thus ~8dB lower in power).  Skin depth is determined by soil losses 
caused by Joule heating and dipole losses.  High conductivity soils, such as those with high moisture and 
salinity, have smaller skin depths (Jol, 2008). The range resolution of a GPR specifies the resolving power 
in depth and is approximately   

rBW

c




2
, (1) 

where BW is the effective bandwidth, and c is the vacuum speed of light, and r is the soil’s relative 
permeability (typically in the range of 5 to 15). The lateral (along track and across track) resolution achieved 
by a GPR system is dependent on the physical beam width of the antenna (in units of area), which increases 
with depth but in general is not better than the range resolution. Further information on GPR theory can be 
found in (Daniels, 2004). 



Traditional GPR systems for road inspection are often centered in the 1 GHz to 3 GHz band 
(Saarenketo & Scullion, 2000), with nearly 100% bandwidth (BW = 1 – 3GHz) which provides excellent 
resolution (2cm – 5cm) at the expense of penetration depth. One of our key findings is that such high 
resolutions can actually be detrimental to the task of localization, as it increases the fragility of the map 
correlation process, for several reasons.  First, high resolution features in GPR data become increasingly 
difficult to correlate when pass-to-pass offsets are present.  For example, at 1 GHz, radar data de-correlates 
at distances around 2-3cm, resulting in a very fine requirement for antenna element spacing.  In addition, the 
phase differences resulting from vehicle motion (pitch and roll) are significant and can lead to difficulties 
correlating coherent GPR data to the map, as each vehicle pass will have slightly different suspension 
trajectories.  High frequencies also suffer from being too sensitive to small changes such as trash on the road 
surface, and are more susceptible to phase errors due to thermal drifts in the transmitter/receiver.  For all of 
these reasons, the GPR data correlation process becomes easier at lower frequencies, which has the benefit 
of improving penetration depths as well.  The only factor preventing one from lowering the frequency 
indefinitely is that the radar cross-section of the most important sub surface geology tends to drop off 
steeply below 100 MHz as well, and the required antenna sizes grow rapidly below 100 MHz.  For this 
reason we have selected the frequency range 100 MHz to 400 MHz as best suited to the task of localization.  
This frequency range is capable of resolving large sub-surface geology on the scale of  ≥ 20cm to 30cm, 
while remaining robust to the sensitivities of high frequency systems mentioned above. We note that the 
variation in  is due to variation in r, primarily driven by moisture content (dry soil will typically be in the 
range r = 4 to 6, whereas fully saturated soils are closer to r = 25 to 36).  In the frequency range where our 
system operates (100 MHz to 400 MHz), soils have skin depths that range from D = 10cm to 100cm 
depending on soil composition and moisture content (in New England soils, for example, D ~ 100cm skin 
depths are common, leading to 2m-3m penetration depths).  

 

 

 
2.1.2 System Components 

 

It is important to note that our GPR design differs from traditional GPR systems so as to allow 
localization to be achieved. The LGPR consists of four basic functional components: a unique antenna array, 
a 2x12 switch matrix, a custom VHF Stepped Frequency Continuous Wave (SFCW) GPR, and one single 
board computer (SBC).  These components are shown in Figure 6 (the radar electronics and SBC are within 
the chassis shown). The switch matrix switches the individual transmit and receive channels of the radar to 

 
Figure 4. Example cross-section of GPR data collected by one transmit / receive channel of the LGPR, showing subterranean 

features.  A high pass IIR spatial filter has been applied, and thus vehicle reflections and the initial ground bounce at  
depth = 0 have been filtered out (see Section 2.1.2 for details of this process). Along track distance is the distance in the 

direction of travel of the vehicle. 



each of the array elements (Figure 5).  Data sent to the SBC is processed using standard SFCW RADAR 
techniques to generate data such as seen in Figure 4.  

 
One key difference between the LGPR array and traditional GPR array designs is the spacing between 

the elements (12.7cm), which is approximately one tenth of a center frequency wavelength.  This resolution 
is finer than typically seen in GPR arrays and is driven by a desire to allow for high fidelity matching to 
baseline data.  In addition, the elements and array cavity are designed so that every element has identical 
near-field (and thus far-field) patterns.  This is required to allow path re-traversal in which pass-to-pass 
offset or misalignment is present.  This element similarity requirement is especially difficult to meet for our 
close element spacing (relative to wavelength), which, in traditional GPR arrays ordinarily results in 
significant mutual coupling and array end effects.  

An array with these characteristics, shown in Figure 2, has been developed previously at MIT Lincoln 
Laboratory (Fenn, Hurst, Pacheco, Cornick, & Parad, 2013) having favorable radiation characteristics for 
localization. That design was impractically large for consumer-vehicle applications and was demonstrated at 
speeds below 15 mph. After performing a study and simulating expected performance, we designed a 
miniature version, which consists of 12 dipole elements linearly aligned within a reflective rectangular metal 
cavity having dimensions 152.4cm x 61cm x 7.6cm (Figure 6).   

 

 
Figure 5. Layout of the GPR transmit (Tx) module, receive (Rx) module, switch matrix, and array antenna elements.  Our 
GPR transmits on only one element at a time (example shown in white) while receiving on the adjacent element (example 
shown in black).  The transmit/receive pair starts with 1/2 and sweeps to 11/12, creating 11 channels of data (5/6, the fifth 

channel, is shown in the example above). 



   
Other than this change in cavity size and number of elements, the design is identical to the larger array. This 
array is capable of mounting rigidly under the vehicle body. Care was taken in the array design to minimize 
the effects of the large metal vehicle chassis, which has the potential to alter the radiation patterns of the 
elements.  The cavity, as designed, is able to reduce the impact of the vehicle chassis on radiation patterns of 
every element. 

 

2.1.3 Signals 

 

The transmit/receive data collection sequence, called a “sweep” pattern, begins by transmitting a pulse 
from the first antenna element and receiving on the second.  Once the first pulse is complete we transmit on 
the second and receive on the third and so on to the last pulse in which we transmit on the 11th and receive 
on the 12th.  Hence, the 12 element array produces 11 channels of data. This sweep takes approximately 
7.8ms, so the vehicle advances several centimeters during the whole sweep (at highway speeds), which is 
sufficient to limit the effect of blurring the data due to motion. Each element “pulse” is formed by a 
sequence of 51 tones evenly spaced from 100MHz to 400MHz. The radiated power is extremely weak, with 
less than 40 microwatts (peak) radiated in total, and less than 4 microwatts (peak) leaked into the 
surrounding air (the majority is absorbed by the ground).  This radiated peak power is significantly (1000x) 
less than traditional pulsed GPR designs, and is made possible by the power efficiencies of the SFCW 
design approach (in which the radar transmits and receives continuously). This extremely low power design 
alleviates spectrum conflict issues faced by traditional GPR designs.  

A Direct Digital Synthesizer (DDS) generates each tone and simultaneously generates a local oscillator 
(LO) signal at the sum of the tone frequency and the intermediate frequency (IF).  The super heterodyne 
receiver multiplies the received radar signal (RX) and the local oscillator and filters the result to yield a 
signal at the intermediate frequency with the same amplitude and phase as the received radar signal. An 
Analog-to-digital converter (ADC) samples the intermediate frequency signal four times per intermediate 
frequency period. Each tone lasts for 6 intermediate frequency periods.  We skip the first and last 
intermediate frequency periods.  For the remaining 4 intermediate frequency periods, we compute and 
average the complex Fourier parameter, or S parameter, for that tone. 

Since the environment’s ambient temperature may be significantly different from one pass to the next 
(i.e. the map is created on a hot summer day, and then subsequently used through the winter) we have 
incorporated an automatic calibration channel.  The purpose of this calibration path is to frequently adjust 

 
Figure 6. Low-profile LGPR array, switch matrix, and processing chassis. 

 Array as built is 152.4cm x 61cm x 7.6cm (5’ x 2’ x 3”). 

LGPR Array

Processing Chassis

Switch Matrix



the signal to compensate for variations caused by component heating, thermal expansion, cable flexing etc. 
We calibrate the system on every sweep (every 7.8ms). To apply the automatic calibration, we divide the S-
parameters (frequency domain I,Q) for each of the other element pulses, Sf,ant, by the S-parameters for the 
calibration channel pulse, Sf,cal.  

calf
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antf S

S
S

,

,
,

ˆ   (2) 

Our experiments indicate that this self-calibration allows the system to operate in an ambient temperature 
range from -5C to 50C with only minor changes to the amplitude and phase response of the system 
(generally at the -20 dBc level or below).  Temperature changes in the subsurface (such as freezing and 
thawing) may still cause unwanted artifacts over temperature, but these effects have not been expored in this 
study. In addition, a one-time ”factory” array calibration is performed in a quiet anechoic chamber after the 
array is fabricated to measure all element direct-coupling responses. This measurement is then used to 
calibrate out, to first order, element differences. To apply the “factory” calibration, we first apply the 
automatic calibration to the factory calibration, Sf,factorycal, using equation 3. We next divide the S-parameters 
for each element pulse by those from a "factory" calibration, and subtract 1 (equation 4).   
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A time delay is next applied to the sequence to prepare the data for conversion to the time domain. Doing 
so keeps the negative part of signals, centered on zero, from appearing at the end of the reconstructed time-
domain signal.  To apply the time delay, we multiply the S-parameters of each element pulse by the 
frequency domain representation of an 8 ns delay.   

The sequence is then windowed to reduce 'ringing' in the reconstructed time-domain signal. To apply the 
window, we multiply the S-parameters of each element pulse by a Chebyshev window with 45 dB 
attenuation of the highest and lowest frequencies. 

We next construct a time domain sequence of 1024 real, time domain values by applying a complex-to-
real discrete Fourier transform for each element pulse.  

Finally, a high pass IIR spatial filter is applied to all data to eliminate any residual internal reflections and 
suppress the ground bounce, which is uniform and not helpful for the matching process. The mean removal 
filter removes constant and very low frequency components from the radar data. The filter is a first-order, 
linear, infinite impulse response, high-pass filter.  The filter constant is chosen so that information decays 
with a half-life of 5m and has a passband of 0.024 cycles/m. The running mean, Mi, the mean removed 
value, Ci,mr, and the parameter, β, are calculated as follows.  The IIR filter distance, diir, is set at 5m, while 
the current distance, di, is calculated from the difference in current and prior estimated positions. 
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At the end of this process, a fixed range gain is applied to compensate for soil attenuation and geometric 
spreading of the electromagnetic wave (Daniels, 2004). This final data product is one “sweep” of array data 
containing 11 channels and can be thought of as a scalar image (of signed one-byte pixels) that is 369 pixels 
deep by 11 pixels across the array. This is the raw data output from the sensor, such as shown in Figure 9, 
which is sent to both the mapping process and the real-time localization process. We also maintain a 
database indexed by the geographic location of each sweep, as indicated by a GPS aided inertial navigation 
system. 

The LGPR concept depends on a sufficient density of sub-surface features to be present for the 
registration process. As seen in Figure 7, the signal to noise ratio of the individual sweeps nears 0 dB near 
the 30m distance point.  In this short region there are very few sub-surface features available for registration. 
We note that this short region has little effect on the localization process, as the system is able to drift 
through that short segment. Note that this drifting process is possible due to the temporary integration of the 
RT3003 GPS/INS solution mentioned in Section 1. It is interesting however to investigate the prevalence of 
these sparse feature regions.  To this end, the average density of features was investigated with the LGPR in 
3 states as well as Afghanistan for the purposes of understanding the distribution of suitable sub-surface 
features.  Here we analyze the density of those features by computing the total signal strength (integrated 
over depth, and over all array elements) of the IIR-filtered GPR data.  In this filtered GPR data, low 
frequency and DC reflections such as vehicle scattering and the surface bounce are filtered out.  With some 
simplifying assumptions (such as stable platform motion), the only remaining energy is from noise and true 
sub-surface features having spatial structure size ranging from ~50m (the approximate IIR filter cut-off) to 
approximately 0.2m (the limit of radar resolution). In general we find that the radar SNR of these features is 
sufficient for localization, even in highly attenuating soils (e.g. Arizona). Figure 7 shows the distribution of 
radar SNR for 5 test locations.  Note that most locations have SNR values over 10 dB.  Even in the worst 
case scenario (fewest sub-surface features - Afghanistan highway) less than 30% of the data is below our 
SNR ≥ 8dB guideline, and the regions where the SNR drops below this value tend to be short (on the order 
of meters) so that an INS is more than capable of tracking motion between GPR locks. 

 

 

 
Figure 7.Views of a typical 50m section of Massachusetts highway collected by the LGPR. The front view shows all 11 

channels across the array from a single location, while the top view shows the total reflected energy (squared and integrated in 
depth).  The total GPR signal energy E is also shown.  The side view is taken from channel #9. On the bottom, the SNR from 

each sweep is also shown. 



 

2.2 REAL-TIME LOCALIZATION 
 

The LGPR system as implemented allows real-time creation of single-track maps with no offline 
modification, as well as real-time localization of the vehicle to a prior map. The radar operates in the way 
described above both for mapping and localization.  However, when in localization mode, two extra 
processing steps, gridding and tracking, allow us to determine geographic location and orientation from the 
radar data. The process is depicted in Figure 9 and described below. 

 
We use a single standard consumer-grade dual-core processor running Linux for all processing. All map 

and localization code was written in C. Low level firmware was executed on an FPGA.  As this LGPR 
prototype used a fixed temporal sample rate (125 Hz), the uncompressed raw map data sizes varied from 
~32MB/km for the 97 km/h collections to ~192MB/km for the 16km/h collections.  Commercial zip 
packages have shown a factor of 20:1 compression is possible on raw LGPR data. It is likely, based on the 
results of the testing presented in Section 3, that lower spatial density data would be sufficient for 

 
Figure 8. Example distributions of SNR for LGPR data collected from 5 sites:  a dirt road in Missouri (clay rich soil), a dirt 
road in a grassy MA field (sandy loam), a MA highway, an Arizona dirt road (highly attenuating hard-packed clay), and a 

highway in Afghanistan. In our experience, LGPR data with SNR > 8 dB are appropriate for achieving accurate localization. 

 

 
 

Figure 9. LGPR 5-axis registration process.  Data from the initial mapping collection is interpolated onto a regular grid and 
the current sweeps is registered in 5 dimensions to the grid. 



localization at all speeds. Further discussion of data size can be found in Section 4.2. Similar to (Levinson & 
Thrun, Robust Vehicle Localization in Urban Environments Using Probabilistic Maps, 2010), map data was 
dynamically pulled to RAM in a dual buffer of local 50m x 50m grids to keep memory requirements 
constant.   

 

2.2.1 Grid Map Preparation 

At initialization, we prepare a local “grid”, a rectangular 3D data structure of scalar signed values 
representing  the reflected radar signal from the subsurface environment centered on the vehicle. As the 
vehicle approaches an edge of /the current grid, we replace it with a new grid centered on the vehicle. The 
gridding process is illustrated by Figure 10 below. Using a fixed-size local grid allows us to page in relevant 
data as needed without keeping huge datasets in memory. Furthermore, it permits fast calculation as data 
from a newly acquired sweep of the GPR can be quickly matched to the nearest data from the prior passes. 

To create a grid, we query the database for previously collected radar sweeps that fall within the grid area. 
We interpolate the raw data from each of those sweeps onto grid points spaced 5cm apart in the horizontal 
dimensions. This may appear too fine for the stated resolution of the radar (20-30cm), however it is often 
beneficial to over-resolve this radar data. The extra information obtained by over-resolving does diminish 
rapidly for finer grid spacing, but with a very high SNR (our SNR is typically > 20 dB) this additional 
information is still useful for registration (useful because the small sub-resolution features are still above 
noise). Note that the accuracy of any correlation-based registration process is driven largely by the SNR of 
the data, rather than the resolution of the GPR or the grid spacing at which we sample that GPR data. 
Vertically, the samples in depth for each grid point retain their native density and span (369 points sampled 
over 60ns). The data for each grid point is a weighted average of all raw data from prior passes that are within 
12cm. The weight for each raw data point is inversely proportional to its distance to the grid point.  For this 
study, maps were created using single-pass datasets.  Multi-pass dataset based maps would require additional 
processing and registration steps to remove “ghosting” effects from relative misalignment of the datasets, an 
area we have not explored with GPR data.  

 
2.2.2 5-DOF Registration 

As each sweep arrives from the radar, we search for the vehicle pose that best fits that sweep to the grid. 
The search region is five-dimensional: latitude, longitude, height, heading, and roll. We found that a simple 

 
Figure 10. A top-down view of two LGPR data tracks is shown in blue, overlaid on a map. The local grid (a), which 

includes all data within a 50m square area, is generated when the vehicle is at location x, and is used while the vehicle is 
within box (b).  When the vehicle reaches the edge of box (b) at point y, a new local grid (c) is generated centered at y. 
Two passes appear in this grid since, while mapping the area, the vehicle traversed two different lanes on the out-going 
and in-coming journey.  Grid points where no map data is present are colored black (the majority of the grid is empty).



2-axis (longitude, latitude) search domain produced inferior results, as variations in the vehicle suspension 
state between passes requires compensating for the subsequent vertical motion (height and roll) of the array, 
which can cause the individual elements to move as much as 5cm up or down from their height on the 
mapping pass. We utilized the correlation between the sweep data and the grid data as the heuristic fit 
criterion.  The correlation is calculated as 
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where the symbols A and B represent the current sweep and a candidate slice of the grid data, respectively, 
and the sums are over all channels i and 360 depth bins d. When correlation is +1, then the match is perfect, 
while a correlation of -1 indicates the worst case correlation (in which one data set is 180 degrees out of 
phase).  Correlation is a simple metric to quantify the matching of subsurface GPR signals, and is 
independent of absolute signal strength.  When the vehicle pose for optimal correlation is found, we regard 
the current sweep as being registered to previous grid data.   

Particle Swarm Optimization (PSO) was chosen as the optimization technique to find the highest 
correlation 5-DOF array pose that matches GPR data to the grid.   Particle swarm optimization is a well-
known optimization technique (Kennedy & Eberhart, 1995) chosen due to its ability to search a very large 
space of candidate solutions. Furthermore, this technique makes no assumptions about the correlation space, 
and is robust to local minima. This quality also allowed us to likewise make no assumptions about the GPR 
data as we expected a wide variation for different areas. Of the existing heuristic search strategies, the 
selection of PSO was driven by its relatively lower computational needs, ability to search large solution 
spaces, and ability be scaled to the computational resources available (Shi & Eberhart, 1999).  Moreover, it 
offers greater robustness in achieving near optimal solutions when compared to simpler techniques such as 
simplex or hill-climbing.   

The algorithm begins by creating “particles”, each of which occupies a randomly chosen point in the 5-
dimension search space associated with the 5 DOFs.  During each iteration of the algorithm, each particle is 
evaluated for quality of fit (correlation).  The algorithm keeps track of the best fit experienced by each 
particle, and the best fit overall across all particles.  Each particle also has a “velocity” value associated with 
each search dimension.  The velocity controls how the position is updated after each iteration of the 
algorithm.   

Each particle then moves through the search space, its position
1iP

 updated from its previous position 
iP
  

with the vector velocity 
iv
 : 

1i i iP P v  
  

 (9) 

Next, the velocity of each particle is updated based on a combination of the best position achieved by that 
particle and the best position of all the particles found thus far: 

1 ( ) ( )i i Bestlocal i Bestglobal iv v C r P P C r P P        
    

 (10) 

ω is the inertial constant, Cα
 is the cognitive constant and Cβ is the social constant. rα and rβ are random 

numbers chosen anew for each iteration. PBestlocal is the best position that a particular particle was able to find 
in the current or past iterations. PBestglobal is the best position that any of the particles was able to find. The 
behavior of the particles can be understood by examining each of the three components of the velocity update 
equation. A high Cα value steers the particle towards areas where it has found good performance. A high Cβ 
value steers a particle towards the best position found by any particle.  A high ω will cause particles to stay 



on their current trajectory, largely unchanged.  A low ω value will allow the particle to be more strongly 
influenced by the other terms in the equation and thus will tend to veer toward other particles.  In the 
implemented optimization algorithm, ω starts high and decreases with subsequent iterations.  These values 
encourage an initially wide level of exploration by the particles which subsequently converge onto a solution 
during the latter iterations.   

As a further refinement, the size of the search region, the number of particles and the number of 
iterations evolve depending on the correlation achieved. When correlation is high, the search region shrinks, 
allowing it to complete quickly. When correlation is low, the search region expands. We consider the tracker 
“locked” onto the grid if the correlation exceeds a threshold (0.9), at least two of the antenna elements 
overlap the mapped data, and the candidate location is physically possible based on the vehicle speed and 
previous location (it is within a delta of the velocity-extrapolated expectation). If the tracker is not locked, 
then we estimate our location using the velocity integrated position of the vehicle from INS/GPS inputs, and 
widen the search box for subsequent sweeps. For an example of how the particles search the space when first 
initialized with a large 5m x 5m region, see Figure 11.  The result of this registration process for one sweep is 
shown in Figure 12. 

 

       

 
Figure 11. The locations of 200 particles over 100 iterations (each representing a candidate location for placing the 

current single array sweep into the map) are shown.  A single high correlation peak is evident in the 4m by 4m region.  
Color indicates the amount of correlation, from 1(dark blue) to +1(red).  (a) Initial estimate (from GPS/INS), (b) Highest 
correlation estimate. Note that the particle locations shown here in easting/northing represent just 2 of the 5 dimensional 
space in which they reside (height, heading, roll are not shown).  Hence, the correlation space here appears to be multi-

valued.  In this image, dark blue represents a correlation of 0, while dark red is 1. 



      
 

  

3 EXPERIMENTAL RESULTS 
 

We demonstrate in this section that  the LGPR can function at highway speeds while providing a cross-
track accuracy of 4cm RMS when using an Oxford Solutions RT3003 RTK-based differential GPS/INS 
solution as a truth reference with 2cm local accuracy.  Cross-track accuracy is defined as the resulting error 
along the axis perpendicular to the vehicle heading.  Along-track accuracy is defined as the resulting error 
along the direction of the vehicle heading. Our tests include a speed test in which the vehicle was driven in a 
large loop at speeds of 16km/h to 97km/h (10mph to 60mph), both for map creation and localization, as well 
as a long distance test. RTK truth speed was used to measure the actual speed of the vehicle when calculating 
the accuracy at each data point.  We discuss below the results from each set of tests and how they improve 
upon existing approaches. 

 

3.1 SPEED TEST RESULTS 
 

We devised a set of tests for our LGPR system to quantify the impact of vehicle speed on baseline 
creation and real-time localization accuracy. Two of the key limitations of prior LGPR work, other than the 
inability to fit underneath a vehicle, were that the operations were limited to speeds below 24km/h and that 
the real-time accuracy had not been characterized (Stanley, Cornick, & Koechling, 2013).  Table 3 shows 
the data collected during one day of testing. These tests were conducted with a manual driver. It should be 
noted that while it would be worthwhile exploring the results of high speed baselines with low speed 
tracking collections, those experiments were not attempted for this initial test.      

 On a clear autumn day, 6 baseline mapping collections and 21 separate one-lap 1.6km localization 
tracking collections were manually driven on the test course. A baseline collection is a manual drive around 
the track with the LGPR in mapping mode.  A tracking collection is a manual drive around the track where 
the LGPR system references a particular map, in this case taken at a particular speed, and uses it to localize 
itself in real-time. Speed was controlled within operator abilities, though the calculations were based on the 
truth measurement of the speed of the vehicle for each data point. In order to test performance of the LGPR 
versus baseline and localization vehicle speeds, each of the six 152cm wide (the array width) baseline 

 
Figure 12. The result of one sweep registering to the map.  This process collections at 125 Hz to determine vehicle 

location relative to the map, one sweep at a time.  Note that the this figure shows only 2D (depth-integrated) energy (to 
enable visualization), while the process is actually performed on fully 3D data. 



mapping collections was driven at a single nominal speed starting at 16km/h in 16 km/h increments up to 
97km/hr. The 21 tracking collections were then driven at speeds and referenced baseline collections 
according to Table 3 below. 

 
The test course was a tree lined asphalt four-lane highway with a grass divider. It contained two straights 

segments approximately 360m each along with four significant curved segments with radii of 7m, 22m, 
75m, and 130m as shown in Figure 13.  

 
 All speed test collections started on the southeast corner of the course and proceeded in a counterclockwise 
direction around the course, and ended across the highway from the starting point. In order to determine the 
accuracy of the LGPR system, a separate truth GPS/INS system was setup to use a differential Real-Time 
Kinematic (RTK) differential GPS solution. The RTK base station for this differential setup was placed mid-
loop to provide approximately 2cm relative localization accuracy in conjunction with the truth GPS/INS unit 
on the vehicle. By comparing the localization coordinates of the LGPR with this truth GPS, we were able to 
estimate localization accuracy to within 2 cm. 

Table 3. Tracking collections, related speeds and baseline collection speeds taken during a single day of LGPR speed and 
real-time accuracy testing are shown.  

 Tracking 
 16km/h 

Tracking
 32km/h 

Tracking
 48km/h 

Tracking 
64km/h 

Tracking 
80km/h 

Tracking 
97km/h 

Baseline 
 16km/h 

1 Run 1 Run 
(removed) 

1 Run 1 Run 1 Run 1 Run 

Baseline 
 32km/h 

 1 Run 1 Run 1 Run 1 Run 1 Run 

Baseline 
 48km/h 

  1 Run 1 Run 1 Run 1 Run 

Baseline 
 64km/h 

   1 Run 1 Run 1 Run 

Baseline 
 80km/h 

    1 Run 1 Run 

Baseline 
 97km/h 

     1 Run 

 

 
Figure 13. Highway speed test course with the tracking “truth” RTK datasets overlaid on an overhead image of the route. 



Accuracy calculations required aligning and comparing the baseline and tracking positions P (2D vectors 
of local easting and northing positions) for the truth RTK GPS/INS PRTK, GPS/INS (WAAS) PGPS, and 
LGPR PGPR.  Because the LGPR global location estimates are determined relative to the baseline map 
(which is created with a WAAS-aided GPS/INS), the LGPR location estimates may have global error due to 
the global error of the map coordinates.  The accuracy of the LGPR approach is thus best measured with a 
relative metric.  In particular, the location of the LGPR location estimate of the tracking collection relative 
to the GPS/INS track of the baseline can be compared with the actual difference between the tracking 
collection and the baseline from the differential RTK truth GPS/INS. The complexity of this calculation 
could have been reduced by creating the map with RTK truth data rather than WAAS GPS/INS. Use of RTK 
systems, however, is limited in range and could have provided non-generalizeable performance 
improvements to the system. Additionally, due to the configuration of the systems as built, this would have 
required off-line processing of the maps after collection rather than the realtime WAAS based map 
collection demonstrated here. To that end, the truth RTK GPS/INS position data from the baseline and 
tracking collections were aligned with one another using interpolation of the two baseline nearest-neighbor 
positions to align with the each tracking point. This alignment created a truth time, ta, and a position 
mapping between the tracking and baseline collections. This then allows an estimate of the relative 
localization error described above.  The vector error, Etotal, was then calculated according to Eq. 11. 

   )()()()()( a
RTK

Basea
RTK

Tracka
GPS

Basea
GPR

Tracka
total tPtPtPtPtE  (11) 

The components of cross-track and along-track error were then calculated by splitting the error vector 
into body frame components using the RTK tracking heading as the along-track axis. The same approach, 
substituting the GPS/INS tracking measurements for the LGPR tracking measurements, was used to 
calculate the GPS/INS errors. In addition, to calculate speed based results, actual RTK truth speed 
measurements were used in the error calculations rather than the nominal tracking collection speeds. Speed 
test results are summarized in Table 4. 

 
During overall speed testing, as a function of distance, the differential GPS/INS (using WAAS) 

demonstrated cross-track errors of 35cm RMS, whereas the LGPR demonstrated cross-track errors of 4.3cm 
RMS.  This overall RMS cross-track error is less than half of the documented 9 cm RMS cross-track error of 
earlier referenced LIDAR based localization methods, noting that there may be significant differences in 
experimental conditions, equipment, and execution. This high accuracy result is encouraging for an early 
capability test of the LGPR technology. 

The example speed collection in Figure 14 shows the along-track and cross-track error for the LGPR and 
GPS/INS(WAAS) solutions.  The LGPR along-track error shows a negative bias that may indicate either a 
time misalignment in the error calculations or a time lag in the LGPR real-time solution. A typical speed 
collection lasted between one and ten minutes depending on vehicle velocity, which we varied from 16km/h 
to 97km/h (10mph to 60mph).  

Table 4. Distance based RMS tracking error performance for the LGPR and GPS/INS (WAAS) systems for all tracking 
collections. 

 Cross-Track 
Error 

Along-Track 
Error 

Total 
Error 

LGPR 4.3cm
 RMS 

11.9cm 
RMS 

12.7cm 
RMS 

GPS/INS (WAAS) 35.0cm 
RMS 

41.7cm 
RMS 

54.4cm 
RMS 



 
The summary data from 0 to 97 km/h (60mph) are shown in Figure 15. Interestingly, the low speed 

region of the plot exhibits higher errors, which are a direct result of the northernmost 7m radius turn in the 
course, in which the driver was forced to slow down.  This tight turn radius made it difficult for the driver to 
maintain overlap with our narrow 1.5m baseline map.  It is interesting to note that when the northernmost 
sharp corner above 718m northing is removed, the low speed error is comparable with the errors at higher 
speeds. 

Figure 14. Example speed measurement run (55km/h mean speed).  Differential GPS shows 40cm or greater error, whereas the 
LGPR estimate closely tracks the RTK truth data.  The larger LGPR error and transition period between 50-60 seconds 

corresponds to the northern 7m radius U-turn. 
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The errors in the along-track direction increase with speed, which we believe to be a combination of a 

small time differential between the LGPR system clock and the DGPS system clock (an artifact of the way 
we measure truth), as well as increased error due to ground sample distance. In order to determine how 
much error was due to time misalignment vs ground sample distance, we plotted the along-track error vs 
speed and fitted a line to it. As increasing ground sample distance would be expected to grow the along-
track error, but would not be forward or reverse biased, the slope of the line indicates a 5.5ms time 
differential between our LGPR system and the DGPS system used to measure truth, as shown in Figure 16. 

 
 

 

 

Figure 15. Time-delay corrected Speed vs. Error with the RMS error for each 8km/h (5mph) wide speed bin up to 97km/h 
(60mph).  Larger deviations at low speeds were associated with the 7m radius corner at the northernmost end of the course. 

Actual RTK truth speed measurements were used to bin all collected data as above. 

 
Figure 16.  Along-track distance based error vs speed plot with least squares linear fit estimating time-related bias errors. 



The estimated resulting along-track error due to increasing ground sample distance is 5.9cm RMS 
overall, as shown in Table 5 and 6.5cm RMS in the high speed 89-97km/h range.  

   

 
LGPR cumulative cross-track localization error, shown in Figure 17, was less than 3.3cm for 68.3% of 

travel distance and less than 7.4cm for 95.5% of travel distance, which is well within the tolerance required to 
maintain a vehicle inside of a lane.  

Table 5. Time-delay corrected distance based RMS tracking error performance for the LGPR and GPS/INS (WAAS) systems 
for all tracking collections. 

 Cross-Track 
Error 

Along-Track 
Error 

Total 
Error 

LGPR 4.3cm
 RMS 

5.9cm RMS 7.3cm 
RMS 

GPS/INS (WAAS) 35.0cm 
RMS 

41.7cm 
RMS 

54.4cm 
RMS 

Figure 17. Cumulative distribution of cross-track and along-track error as a fraction of total distance traveled for all data 
collected. Percentages shown correspond to standard 1σ and 2σ values for a Gaussian distribution (the measured distribution 
shown here deviates slightly from Gaussian).  Both time-delay corrected and nominal data are shown on the along-track error 

plot.
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Cross-track error values shrink as the correlation approaches one, as plotted in Figure 18.  This suggests 

that correlation is a useful metric to gauge tracking performance. It should be noted that the peak error data 
points were during a time when the correlation was zero, which implies that the LGPR solution was relying 
on the integrated GPS/INS solution alone during that time. 

 
As the LGPR array overlap with the prior map decreases, localization accuracy decreases, as plotted in 

Figure 19. Low (<= 6cm) tracking performance is maintained until roughly 75cm of offset (55cm of overlap), 
above which error increases to just over 17cm at 1.1m. This would be expected for narrow 1.5m wide single-
pass maps, as the overlap decreases, less data is made available to register and the chances of a poor fit 

 
Figure 18. Correlation (x axis) vs Cross-track error (cm).  Note that the registration process defaults to the integrated 

GPS/INS solution when the correlation is below 0.9 or less than 2 elements overlap. 
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Figure 19. Cross-track error vs. Cross-track offset of array.  This plot shows that accurate localization is possible, even 
with only a limited overlap between the map and the array. 
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increase. A wider array, such as could be mounted on a truck or bus, would also be expected to require 
approximately 55cm of overlap for low error performance. 

We note that the vehicle motion was relatively benign, as would be expected during paved highway 
operation. Table 6 describes the peak relative motion of the vehicle during the tracking runs.  Relative angles 
are the difference between the absolute orientation of the baseline map and the absolute orientation of the 
tracking collection. The cross-track position is the difference between the RTK GPS/INS solution for the 
baseline map and the RTK GPS/INS solution for the tracking collection.  The data were trimmed to only 
include data points at less than 1.3m in position offset, where the array elements were actually overlapping 
with the map. 

Table 6. Peak relative change values in key dimensions between track and baseline collections 

Metric Max Value Min Value

Height 0.2cm -0.2cm

Roll 1.2deg -1.5deg

Pitch 0.8deg -0.6deg

Cross-track 
Position 

780cm
(130cm trimmed) 

-541cm
(-130cm trimmed) 

Cross-track Error 70.4cm -120.9cm

Along-track Error 84.7cm -191.2cm

 

As this experiment was performed on a flat highway, large variations were not expected to be observed. 
The error did not appear to increase as a function of the limited changes in each of these dimensions.  The 
cross-track and along-track peak error values result from a time, as noted earlier, where the LGPR had zero 
correlation during the sharp U-turn at the northern edge of the track. This implies that the peak cross-track 
(lateral) error was a function of the integrated GPS/INS solution during that time period.  

We note that the summary data presented in this section has been modified in two ways: we have only 
included data where the vehicle has at least one element overlapping the map (130 cm offset or less), and we 
have eliminated data before the initial lock of the particle swarm optimization (less than 6 seconds into each 
collection in all cases).  In addition, the 32km/h nominal pass at 16 km/h baseline was removed due to what 
appeared to be unrelated operating system maintenance saturating the processing during the test. The nominal 
tracking rate was observed at 125Hz for the majority of data points, and measured at 110Hz RMS overall 
inclusive of periods of more intensive calculation during initial tracking lock.  

 

3.2 RESULTS FOR IMPROVED HIGHWAY TEST  
 

We conducted highway testing to demonstrate the ability of the LGPR system to maintain lock over long 
distances on improved roads (which include rebar) and bridges. Testing was conducted with a manual driver 
on the highway shown in Figure 20. Vehicle speeds varied based on traffic conditions, but most of the test 
was driven at approximately 97km/h (60mph).  The total distance traveled was 77km (48miles).  Because a 
differential RTK GPS solution is not feasible in this scenario (our differential GPS base station range is only 
a few miles) and we have not as of yet fused the system with other localization methods, such as LIDAR, we 
were unable to assess localization accuracy on this test. However, it is still a useful exercise to examine key 
measures of performance for this long distance test.   The data correlation (as defined in Eq. 4) over this 
collection was excellent, with a mean of 0.90 and a standard deviation of 0.07, as shown in Figure 21. 



 

 
The LGPR system was able to track the vehicle location on over 99.9% of the 324,000 location estimates 

produced on the journey (excluding cases in which the vehicle did not overlap the map). The system 
experienced 8 short periods of tracking loss during the localization test.  Most periods of tracking loss lasted 
less than one second, while the longest period lasted 4 seconds. The causes of the brief losses of tracking are 
under study, as sufficient subsurface structure appears to be present. During this period the system defaults 
to GPS (with Omnistar or WAAS, as available).  This underscores that additional localization sensors would 
be required to achieve the high reliability ultimately required by AGV applications.  

 

 
A typical example of loss of tracking is shown in Figure 22. Notice that as the fraction of the array over 

the map was reduced, the correlation of the values drops to zero. As discussed earlier, the correlation 
provides a good indication of certainty in the LGPR location estimate, and could be used to estimate 
covariance values for fusing multiple sensors in a Kalman filter. 

 
Figure 20. Overhead map of the improved highway testing loop (77 km), which included several bridges. 

 
Figure 21: Correlation histogram and speed values for the entire localization test on improved highways.  

 



 

 
Typical data is shown in top view and overlaid onto a map in Figure 23. 

 
  It is of interest to note that the LGPR data can potentially be used to evaluate the structure of the road and 
map underlying or surface features, such as pipes or potholes.  This may, in itself, provide a use case for 
creating and maintaining a large scale map of the roadways around the world. 

4 DISCUSSION OF REMAINING CONCEPT RISKS 
The authors acknowledge that this paper covers early work in the exploration of localization using 

Ground Penetrating RADAR.  There remain significant challenges and risks that should be further 
characterized.  We discuss a number of those risks below in limited detail to provide context for future 
work. 

4.1 SUBSURFACE MAP STABILITY 
A fundamental requirement for the LGPR system is that subsurface features must be sufficiently stable 

so that high correlations can be made on future passes. The highway and subsurface move based on seasonal 
and water based variations, which offer the potential to reduce the effectiveness of LGPR based maps. The 

 
Figure 22: Example loss of LGPR lock and the corresponding loss of correlation. The LGPR is able to re-lock onto position 

after just a few seconds. 

 
Figure 23: Overlay of GPR data on map.  The GPR data is 3D, so only the depth-integrated intensity is shown here.  

Substantial subsurface features can be seen in the data.  Global alignment for this dataset used a WAAS GPS/INS solution, so 
some alignment offsets are expected. 



problem can be broken down into two main questions. Firstly, do the subsurface features in the relevant 
locations change significantly over time? Secondly, do those changes prevent localization? 

 While subsurface feature localization is new, the concept of precise leveling for geodetic surveying 
has been studied in the US since 1877 (Floyd, 1978).  The primary direction of ground motion is in the 
vertical direction, barring significant events such as earthquakes. Primary near-surface sources of motion 
include direct impact or compaction from surface based sources such as vehicles, motion due to frost heave, 
and sinking or swelling of soil and rock due to moisture content (Floyd, 1978). Road beds are also 
compacted during construction to mitigate vehicle-related compaction effects. The depth of frost penetration 
varies depending on the region as shown in Figure 24. The continental US has peak frost depth at just over 
100 inches in the worst case areas, which, as a comparison, is less than the typical 3m (118in) peak depth of 
penetration of the LGPR.  

 

The actual risk of frost heave, however, is substantially reduced by standard road building and 
drainage techniques. On top of the compacted road bed itself, courses of gravel and other materials are used 
to improve drainage. The size of the particulate matter within the road subsurface is typically controlled to 
reduce susceptibility to frost heave (Moulton, 1980). The risk of swelling due to moisture is also 
substantially reduced by standard road drainage techniques. Even without human modification, the expected 
vertical rise of natural soils due to swelling is limited to peaks of a few inches in cases of extreme swell 
conditions (Christopher, Schwartz, & Boudreau, 2006), although changes in subsurface character may also 
occur. In short, there are regular, primarily vertical changes to the subsurface and surface of roads and 
highways, though it remains to be shown if the changes are of any significance to the LGPR over time. 

In regards to whether or not the changes in subsurface or surface affect localization, the answer is 
unclear in the first and known in the other. Surface changes have negligible effects on the LGPR correlation 
due to the low weighting of the measured ground bounce from the surface. Subsurface changes would need 
to be substantial enough to significantly horizontally shift the location of the highest correlation or make the 
correlation sufficiently low over a long enough area that the measurements from the IMU (or INS with other 
sensors) are unable to be integrated to accurately smooth the location estimate. Frost heave on roads, for 
instance, typically results in multiple local disruptions in the road surface that may have little effect on the 
overall solution of the system. It remains, however, to be shown if subsurface changes underneath roadways 
over long time periods will affect localization to prior LGPR maps. 

 
Figure 24. Map of United States peak frost penetration depth (Moulton, 1980) 



 

4.2 DATA REQUIREMENTS 
The LGPR saves data at a rate of 535KB/s (2GB/h). That rate can be reduced to 87KB/s or 

(311MB/h), by not oversampling the data in depth and by eliminating insertion of redundant INS data in the 
database. For reference, the popular Velodyne HDL-64E 3D LIDAR creates data at about 4MB/s. 

How much map data LGPR requires depends on the size of the geographic area in which the vehicle 
operates. When the vehicle follows a known route for which has it has previously recorded data, it swaps in 
map data at about the ratio of the speed at which it tracks the route and the speed at which it collected the 
map data. For example, when tracking at 27m/s over data recorded at 2.2m/s, LGPR swaps in map data at a 
rate of about 6.5MB/s (23GB/h). Again, efficient data storage could reduce the rate to 1.1MB/s (3.8GB/h). 

In the example above, the LGPR tracks a “ribbon” of data about 1.5m wide. If it deviates more than a 
meter to either side of the nominal path, so little of each scan will overlap the map data that it is likely to get 
lost. More map data to each side would allow localization if the vehicle wanders. Meanwhile the map data is 
more closely spaced in the direction of travel than necessary, 1.7cm compared to 12.7cm spacing from side 
to side. 

The LGPR actually projects the map data onto a rectangular grid. With radar resolution of about 
12.5cm in horizontal position and 25cm in depth, data sampled at 5cm in horizontal position and 10cm in 
depth captures the features to which the radar is sensitive. The resulting map data density is 15Kb/m2. 
Providing a swath of map data 3m wide for a vehicle traveling 40m/s requires 1.8MB/s (6.4GB/h) carried 
onboard or communicated while traveling. 

The US has over 215,000 lane miles (346,000km) in its interstate highways and 8.5 million lane miles 
(13.7 million km) of paved road (Federal Highway Administration, 2010). The average interstate lane is 
3.6m (12ft) wide (Federal Highway Administration, 2007), which is conservative for the average road lane 
width. Simple calculations give an area of 1250 km2 of interstate map data and 49,300 km2 of road map 
data, which would consume 19TB and a daunting 740TB respectively. Driveways, parking lots, and 
unpaved roads might double that. Carrying enough LGPR data for the entire US requires advances in 
storage technology, but carrying enough data to operate in a small geographic area does not. 

A fourth generation (4G) mobile broadband data connection with 12.5MB/s capacity would more than 
suffice to supply LGPR map data for a vehicle moving at highway speed. A third generation (3G) 
connection with 625kB/s capacity would fall short for highway speed, but suffice for city driving. 
Engineering a system to dynamically download map data, with enough on-board storage to carry through 
gaps in the cell phone network, seems achievable. 

4.3 ALL-WEATHER OPERATION 
All-weather operation, particularly in snow and rain, is one of the key potential applications offered by 

LGPR. It remains to show, however, that the LGPR system can operate reliably in either condition. The 
LGPR system has been used without issue during and after rain of up to ¼ inch, however no direct study has 
been performed to further characterize performance.  As noted in Hoekstra (Hoekstra & Delaney, 1974), 
saturation of the soil up to 30 percent can attenuate signals in the 100MHz to 400MHz range at up to 
10db/m. This will reduce the signal to noise ratio of the system, though there is sufficient margin to 
overcome most of this effect.  Variations in moisture content also cause GPR data to contract or expand in 
the depth dimension, as moisture has an effect on wave propagation velocity. As a result, the registration 
process may be impacted when soil moisture content is variable between the baseline and tracking passes.  
This is an active area of research, so the impact on the LGPR remains unknown, with the exception of a 
single known good performance immediately (< 24 hours) after 1/4in of rain.   

Propagation of 600MHz signals in snow has been characterized, and the associated loss at these 
frequencies is approximately 1-2dB over the 6in offset of the array from the surface (Abe, Yamaguchi, & 



Sengoku, 1990). Losses of similar magnitude or less would be expected for the 100MHz to 400MHz range.  
The practical risk associated with operation in snow is the salt used to melt the snow on roads, which 
attenuates RF signals more significantly.  Although the LGPR has successfully measured subsurface 
characteristics through snow and road salt mixes, localization performance remains to be studied and 
characterized for LGPR systems. 

4.4 VEHICLE CHASSIS REFLECTIONS 
Vehicle chassis reflections have the potential to cause variability and may be interpreted as additional 

subsurface reflections. When signals are emitted from the antenna, a fraction of those waves reflect off of 
the surface and bounce off of the vehicle chassis. These waves may then bounce off of the ground and into 
the receiving antenna. The strength of the reflections is a function of the power emitted, the characteristics 
of the vehicle chassis, and how well the signal couples with the ground. Limited simulations discussed 
earlier indicate that the strength of these signals is insufficient in the current design to prevent localization.  
Further study is warranted to understand differences between vehicle chassis, especially as the distance from 
the ground increases and the distance to the chassis decreases. 

4.5 ANTENNA POLARIZATION 
The prototype antenna design yields polarized measurements.  As a result, the map data depends on the 

orientation (heading) of the vehicle.  In cases where map collection paths and tracking paths are far off 
parallel (as might occur in an open field or parking lot), alternate antenna designs and algorithm adaptations 
may be required. 

4.6 MINIATURIZATION 
The small LGPR array design presented and tested in this paper is 3in x 2ft x 5ft. While a significant 

advancement from the original 1ft x 2ft x 10ft arrays, the arrays will need to be further reduced in height in 
order to be broadly applicable to consumer vehicles.  The 3in height was chosen as approximately 1/16 of 
the wavelength of the 250MHz center frequency of the antenna, though it is not clear that this offers 
significant benefits over other similar heights. The primary concern is to reflect waves in a way that does not 
create large ambiguity in timing of reflections and will not significantly destructively interfere with the 
emitted waves.  As the height of the array shrinks, additional concerns include the proximity of the top 
surface ground plane to the antenna itself.  

4.7 COST 
Cost is a driver for consumer use of self-driving vehicle technologies. There has been little work to date 

on determining the eventual cost of a mass produced LGPR system. The LGPR design, however, has no 
moving parts, uses components that are readily available commercially, and can be prototyped for less than 
the typical cost of some commercial LIDAR systems. The antenna itself is made of simple printed circuit 
boards. The most expensive component in the system described in this paper is a processing chassis 
designed for military conditions; the military chassis would not be required for consumer use. Cost is 
already within bounds for industrial and military use, even produced as prototype systems. The authors are 
not aware of a technical reason the LGPR system could not be produced inexpensively in high volume. 

 

 

5 CONCLUSIONS 
 

Accurate, reliable, and robust localization is critical for operation and acceptance of autonomous vehicles. 
The vehicles must not only be capable of robust operation over an extended duration, but also in adverse 
conditions, such as snow, fog, dust, and GPS denied areas, as well as in the face of sensor damage or failure. 



Current approaches, including LIDAR, GPS/INS, and camera based techniques work well in benign 
conditions for limited duration, but are susceptible to failure or insufficient performance in many common 
weather and environmental conditions. 

This paper details a new, complementary mode of map-based localization that is inherently insensitive to 
many of the failure modes of traditional and current localization approaches.  We have demonstrated 
accuracy levels better than or equal to other large scale approaches using a relatively simple low-profile 
LGPR system.  We have shown that a low-profile system can operate underneath a vehicle at highway speeds 
on existing road networks. 

One of the fundamental limitations in our approach, similar to LIDAR based localization, is the map 
generation and associated data requirements. Unlike LIDAR mapping, LGPR requires at least one pass to 
cover most of each lane width, though complete coverage is not necessarily required as partial overlap is 
generally sufficient for vehicle localization.  There will be no holes in the map due to other vehicles blocking 
the sensor view, and underground geology is relatively stationary.  In addition, LGPR data maps have 
alternative uses as a detailed map of underground infrastructure (pipes under roads, rebar in bridges, etc.).  

The miniature LGPR array is small but would need to be reduced further from its current 7.5cm height to 
fit under some passenger vehicles.   We are currently studying the possibility of reducing this height further. 

There are many fundamental areas of research associated with LGPR that remain to be explored.  Firstly, 
LGPR should be fused with current and traditional localization approaches in order to provide a robust 
overall system.  The current heuristic approach is dependent on a GPS solution and would likely lose track in 
extended GPS denied conditions.  Secondly, it remains to be shown that LGPR functions over the wide range 
of soils and weather conditions, such as water saturated soil and significant surface water accumulation in 
particular. While RF waves at 100-400MHz penetrate snow with almost negligible losses, as can be inferred 
from (Abe, Yamaguchi, & Sengoku, 1990), road salt and surface or subsurface water accumulation can 
attenuate the signal.  Thirdly, vehicle chassis radar reflections must be characterized across a wide space of 
vehicle types to ensure cross-vehicle compatibility. Lastly, of interest would be creation of large scale maps 
using multi-pass mapping datasets.   
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